High-Performance CUDA Implementation of N-Body
Simulation with Barnes-Hut Algorithm

Hsin-Hung Wu
January 24, 2024

1 Introduction

1.1 Problem description

N-body simulation simulates a dynamical system of particles, usually under the influence of physical
forces. In our N-body problem, we will be predicting the individual movements of a group of stars and
planets interacting with each other through gravitational force. We will implement and compare both
the direct-sum algorithm, which takes O(N?), and the Barnes-Hut algorithm, which takes O(N log N).
The direct-sum algorithm is a brute force algorithm that explicitly simulates the interaction of an object
with every other object in the system. The Barnes-Hut algorithm is an approximation algorithm
that first divides the bodies into groups and stores them in a quad-tree. Nearby bodies are treated
individually, but distant bodies are approximated as a single large body [1]. Barnes-Hut algorithm
consists mainly of hierarchical quad-tree construction and force calculation. In tree construction, each
body is inserted into the tree recursively and the center of mass for each node is updated accordingly.
During force calculation on each body, the net force is summed up through the traversal of the quad-
tree. After the force calculation, the algorithm calculates and updates the new positions and velocities
for each body. The tree will then be discarded and a new tree will be generated for each of the following
iterations.

1.2 Suitability for GPU acceleration

The N-body problem consists of expensive computation in force calculations among all pairs of bodies,
which is highly parallelizable as each pair of bodies can be computed independently of each other and
so is the net force summation on each body. Direct-sum algorithm will require O(N?) computations
and can be parallelized by allocating N threads where each thread computes the force acting on each of
the N bodies. Barnes-Hut algorithm will require O(N log N) computations and can be parallelized in
bounding box computation, quad-tree construction, and force update phases. The bounding box can
be computed with parallel reduction. The construction of the quad-tree can be done in a top-down
hierarchical manner where each node in the same level can be constructed in parallel. The force of all
bodies can be computed by having each body traverse the quadtree in parallel.

1.3 Intellectual Challenges

N-body is highly applied in astrophysics, to understand the evolution of the universe’s large-scale
structures such as galaxy filaments, galaxy halos, and the dynamic evolution of star clusters [2], or
in protein folding, turbulent fluid flow simulation, global illumination computation, and etc [3]. For
the direct-sum method, it is pretty straightforward to parallelize. We need to pick the optimal block
size, to optimize shared memory access, data reuse, and locality. For Barnes-Hut algorithm, there
are more challenges mainly in the quad-tree construction phase. We must minimize communication
and synchronization during construction. In addition, constructions of quad-tree among blocks have
nonuniform workloads since the bodies are not uniformly distributed which causes irregular data access
patterns. We will need to load balance to ensure the blocks have a similar workload. Lastly, in the
force update phase, we must minimize global access when each thread traverses the quad-tree.

2 Methods

2.1 Data and Parameters

For our n-body simulation, the parameters of the bodies, which include mass, radius, position, velocity,
and acceleration, follow an astronomical scale. In order to display real astronomical positions on
a fixed-size window, we scale the positions down. For the quadtree node, the parameters contain
centerMass, totalMass, isLeaf, two vectors that identify the bounding box, and a start and end indices
that represent the subset of bodies the node contains. We provide four simulations which are spiral
galaxy, random initialization, galaxy collision, and our solar system.

2.2 Direct-Sum Algorithm

For the Direct-Sum algorithm, we first considered computing all pairs in parallel, but it would require
O(N?), which would be limited by memory bandwidth. We then decided to serialize some of the
computation by letting each thread compute all N interactions for one body. We used tiling to optimize
data reuse, utilize shared memory, and coalesce memory accesses. It allows us to do p? computations
with 2p body descriptions as shown in Figure 1 [3].

N Bodies .

1 ot--t--1- »
o S | p Threads
P IS O S I [P

A\l

LICIEI0)
;

N/p Blocks

Y vY|Y|¥Y]lY

elelelel T

*olele

v | v

-
p steps between
loads from global memory

Figure 1: Tiled Direct-Sum Implementation [3]

2.3 Barnes-Hut Algorithm

For the Barnes-Hut algorithm, Algorithm 1 gives us a high-level overview, which contains the four
kernels that are used.

Algorithm 1 Barnes-Hut Algorithm Overview

for each timestep do
1. reset quadtree
2. compute bounding box
3. construct quadtree
4. compute force
end for

Kernel 1 resets the memory of the quadtree to its default values. Kernel 2 computes the bounding
box that contains all the N bodies and the bound will become the root node of the quadtree. Kernel
3 constructs the quadtree in a top-down hierarchical manner using dynamic parallelism where each
block represents a node and holds all the bodies within its bound. The node will then spawn four
more blocks, one for each of its quadrants, until it either reaches the leaf node or contains one body.
Kernel 4 uses the constructed quadtree to compute the force acting on each of the N bodies. Figure

2a shows region partitions with bounding boxes and Figure 2b shows a constructed quadtree with the
given bodies.

oe
e ocC
oD
o 0
- ®© ‘000
00
oe oH
e . Body) h>1 Empt drant
(a) region partitions (b) quad-tree

Figure 2: Quadtree and Bounding Box[4]

3 Implementation

3.1 Global Optimizations

The core data structure for the Barnes-Hut algorithm is the quad-tree as it is what the body uses
to update its force. Quadtree is typically built with pointers on the heap and the child nodes are
dynamically allocated as the tree grows, which introduces performance overheads. We will instead
implement the quadtree using a fixed-size array and traverse the tree with indexing. We picked the
array size based on our 2d window size, body radius/pixel, and the balance between efficiency and
accuracy [5].

3.2 Kernel 1

For the first kernel, we will reset each quadtree node to its default value in parallel where each thread
will be resetting one node.

3.3 Kernel 2

For the second kernel, we will compute the bounding box of all bodies for the root node of the quadtree
as the root node encompasses the whole 2d space. We first split the N bodies into multiple blocks
where each block will find the bound for a subset of the bodies. Each body is read globally once in
a fully coalesced manner when loaded into shared memory. The bound will then be computed using
parallel reduction. Lastly, each block updates the root node’s bound with min and max and global
atomic operations to prevent race conditions when accessing the root node in parallel.

3.4 Kernel 3 [6]

For the third kernel, we will compute the quadtree in a top-down hierarchical manner to avoid locks
and synchronizations. One node is assigned to one thread block. Initially, at depth 0, one thread
block is assigned to the entire two-dimensional space, which contains all bodies. It divides the space
into four quadrants and launches one thread block for each quadrant. These child blocks will again
subdivide their quadrants if they contain more than one body or have not reached the leaf nodes.
First, the block will compute its center of mass with the bodies it contains. We compute the
center of mass for each node while we construct the quadtree to avoid an addition kernel just for
updating the center of mass. When computing the center of mass, we use parallel reduction and warp
unrolling for speed up. If the block contains more than one body and is not at the leaf nodes, then
we will proceed with the process of launching child blocks. The number of bodies for each quadrant

is counted in parallel with atomicAdd to update the count for each quadrant. A four-element parallel
scan operation is used to compute the offsets to the locations where the bodies will be stored. Then,
the bodies are reordered in parallel, so that those bodies in the same quadrant are grouped together
and placed into their section of the body storage. Finally, we assign the new start and end indices for
each child node as each node uses two indices to keep track of the bodies it contains. The block then
launches a child kernel with four thread blocks, one for each of the four new quadrants.

Figure 3 shows us an overview of kernel 3 including how it launches new blocks with dynamic
parallelism.

“Computo cortr of Bounding o
o n

¥

e contar o boun
box

ount poits in chiror

Figure 3: Dynamic Parallelism [6]

Figure 4 shows us how the bodies are reordered and regrouped using two buffers. At depth O,
the bodies are stored in buffer 0 and buffer 1 will be the reorder buffer. Each buffer will be used
alternatively as the reorder buffer as the tree traverses.

Buffer 0 Buffer 1
) Block 0)
} {
Pepn=0 [afofcfafe[rfo[n[i[i[«[t[m[nfoefalr s efu] [T T[T TTTTTTTTTTTTTTTT]
(A)
Block 00 Block 01 Block 02 Block 03
Depth=1 [a[b]c[a]e[r[a[n[i[i[«[t[m[n]o]e]alr]s][t]u] [o]c]eff]a]im]n[o]aanifki e alrlsTt]u]
Q&P S &P & (8)
&L L
f } t = f t t } {
oesi-2 [+ < o7 o[OB+ [+ [+ < o IO [+ [[[s [1[= [+ [e e e e [T < [e [e [[+]
(© ROROEadt
@0&;9@:}0&“
=3 [Te [T s [s e [[T [l Te] (e[n [[e [Te e e o< o [« [T T T el
(D)
[lclelr mnTo ifo aa[nx e a1]rTt]s]u]

(E)

Figure 4: Body Reorder [6]

3.5 Kernel 4

For the fourth kernel, we will compute the force acting on each body with the previously constructed
quadtree. We originally considered using a queue to traverse the quadtree iteratively in a breath-first-
search manner to avoid the overhead that comes with recursions. However, the queue that needs to be

stored on the stack has to be as large as the number of leaves in the quadtree, which is not feasible. We
then decided to traverse the quadtree recursively in a depth-first search manner where the recursion
depth will be only as much as the max depth of the quadtree.

4 Evaluations

Figure 5 shows the run time for all implementations as the number of bodies increases. As we can
see, the GPU implementations are more efficient than the CPU by an order of magnitude and the
Barnes-Hut algorithm is the most efficient algorithm of the two. Direct Sum GPU runs faster than
Barnes-Hut GPU when N < 10000, but its run time starts growing exponentially as the number of
bodies increases beyond that. Barnes-Hut GPU scales really well as the run time grows linearly with
1509.54 milliseconds of run time per iteration for 5,000,000 bodies.

50000

40000

30000

Millisecond

20000

10000 /
- |

1000 2000 5000 10000 50000 100000 500000 1000000 5000000
N

Figure 5: Runtime per iteration in millisecond

Figure 6 shows how the run time of the compute force kernel changes as the block size changes
and as we can see, the run time increases as the block size increases. In the compute force kernel,
we traverse the quadtree recursively which introduces additional overhead and potentially impacts the
performance as the block size increases. Increasing the block size means that each block requires more
of these resources and so if the resources are insufficient to accommodate larger block sizes, the GPU
may need to schedule and execute blocks in a less efficient manner, leading to increased runtime. We
picked 32 as the block size for the compute force kernel as it gives us the most efficient result.

1400
1380

1360

-
W
5
o

Millisecond

-
w
N
o

1300
1280

1260 32 64 128 256 512

Block Size

Figure 6: Runtime for different block sizes in milliseconds

Barnes-Hut GPU Kernel Runtime for one iteration with 5,000,000 bodies
Kernel 1 Kernel 2 Kernel 3 Kernel 4

CPU Runtime (ms) || 0 321 17025 776512

GPU Runtime (ms) || 0.159 3.16 240.9 1265.32

CPU/GPU 0 101.58 70.67 613.68

From the table above, we can see the run time for each kernel and the CPU/GPU ratio which measures
the speed up. As we can see, kernel 4, the compute force kernel, is the slowest and takes around 84%
of the total run time. However, the most speed-up also comes from kernel 4 which is more than 600
times faster than the CPU version.

5 Conclusions

The CUDA implementation makes n-body simulation feasible as we are able to simulate 5 million
or more bodies in real time. A lot of optimization and redesigning is done when switching from
the CPU version to the GPU version. One major redesign is to use a fixed-size array instead of
pointers for the quadtree. It reduces the overhead of pointers and heap and eliminates the need for
locks and synchronization, which gives us drastic speed-ups. Different techniques such as the use of
shared memory, memory coalescing, warp unrolling, tiling, parallel reduction, dynamic parallelism,
computation-to-communication ratio and etc, are used to reduce global memory accesses and for
achieving high performance. This simulation allows us to visualize and study the formation of our
galaxy and gain deeper insight into our universe.

6 Future Directions

One major future improvement would be to implement the simulation in 3D instead of 2D as 2D
only gives us an idea, but not the real picture of our universe. A 3D implementation of the Barnes-
Hut algorithm would then require the use of an octtree instead of a quadtree. Overall, there are
improvements to be made regarding kernel implementation, hyper-parameter tuning, and algorithm
design such as using the Fast multipole method.

7 Source Code

The source code is here.

References

[1] Wikipedia. Barnes-Hut simulation — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=Barnes%E2%80%93Hut%20simulation&oldid=1092207998, 2023. [On-
line; accessed 26-February-2023].

[2] Wikipedia. N-body simulation — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/w/index.php?title=N-body%20simulation&oldid=1115952336, 2023. [Online; accessed 26-
February-2023].

[3] Lars Nyland, Mark Harris, and Jan Prins. Chapter 31. fast n-body simulation
with cuda. https://developer.nvidia.com/gpugemns/gpugemns3/part-v-physics-simulation/
chapter-31-fast-n-body-simulation-cuda.

[4] Tom Ventimiglia and Kevin Wayne. The barnes-hut algorithm. http://arborjs.org/docs/
barnes-hut.

[6] Martin Burtscher and Keshav Pingali. An efficient cuda implementation of the tree-based barnes
hut n-body algorithm. GPU Computing Gems Emerald Edition, 12 2011.

https://github.com/Hsin-Hung/N-body-simulation
http://en.wikipedia.org/w/index.php?title=Barnes%E2%80%93Hut%20simulation&oldid=1092207998
http://en.wikipedia.org/w/index.php?title=Barnes%E2%80%93Hut%20simulation&oldid=1092207998
http://en.wikipedia.org/w/index.php?title=N-body%20simulation&oldid=1115952336
http://en.wikipedia.org/w/index.php?title=N-body%20simulation&oldid=1115952336
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda
http://arborjs.org/docs/barnes-hut
http://arborjs.org/docs/barnes-hut

[6] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Applications of GPU Computing Series. Morgan Kaufmann Publishers, Burlington, MA,
2010.

	Introduction
	Problem description
	Suitability for GPU acceleration
	Intellectual Challenges

	Methods
	Data and Parameters
	Direct-Sum Algorithm
	Barnes-Hut Algorithm

	Implementation
	Global Optimizations
	Kernel 1
	Kernel 2
	Kernel 3 kirk10
	Kernel 4

	Evaluations
	Conclusions
	Future Directions
	Source Code

